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Abstract

The presence of endwalls in Taylor–Couette flows has far reach-
ing effects, leading to dynamics that are qualitatively different
to the idealized flow involving infinitely long cylinders. This
is well known when the inner cylinder is rotating and the outer
cylinder is stationary. The effects of endwalls in the centrifu-
gally stable situation with stationary inner cylinder have not
been previously considered in detail. The meridional flows in-
duced by the endwalls lead to the formation of a thin sidewall
boundary layer on the inner cylinder wall if the endwalls are ro-
tating, or on the outer cylinder wall if they are stationary. At suf-
ficiently high Reynolds numbers, the sidewall boundary layer
has concentrated shear, the pressure gradient in the azimuthal
direction (which is the streamwise direction for the boundary
layer flow) is zero (the flow is axisymmetric) and the bound-
ary layer thickness is constant. At a critical Reynolds num-
ber, the sidewall boundary layer loses stability at a subcritical
Hopf bifurcation, breaking the axisymmetry of the flow, and
for Reynolds numbers slightly above critical, a packet of Hopf
modes with azimuthal wavenumbers clustered about the critical
wavenumber grow. The early time evolution of the critical Hopf
mode is a rotating wave analogous to a Tollmien–Schlichting
wave. As the Hopf modes grow, nonlinear interactions lead to
modulations, localization of the disturbances and the evolution
of concentrated streamwise vortical streaks which become very
long and intense via vortex stretching.

Introduction

Circular Couette flow is the flow in the annular gap between
two rotating cylinders. Recently, there has been much interest
in regimes where linear stability theory for the infinite length
annulus predicts the flow to be stable to centrifugal instability,
as it may be nonlinearly unstable [3]. For the infinite length
annulus, the basic state is steady, axisymmetric and axially in-
variant, and its azimuthal velocity has a well-known analytic
form, given by v(r) = ar + b/r, where the constants a and b
are determined by the radii of the inner and outer cylinders and
their angular speeds [6]. With the inner cylinder stationary and
the outer cylinder rotating, this flow is linearly stable.

The linear stability of the finite case has not been previ-
ously analyzed. Recent experiments utilizing both visualiza-
tion and velocimetry report subcritical transition to turbulence
for Reynolds numbers of order 105 in the wide gap regime, as
well as a considerable hysteresis range in Reynolds number be-
tween the laminar and turbulent states [2]. Computing the basic
states at these high Reynolds numbers is not trivial due to the
thin boundary layers involved. Furthermore, obtaining the ba-
sic state experimentally at the high Reynolds number end of the
hysteresis region is very challenging due to noise and imperfec-
tions triggering transition to turbulence [1].

Here, the axisymmetric basic state is computed for Reynolds
numbers a little beyond 105, and stability to general three-
dimensional perturbations is determined via temporal evolution
of the three-dimensional Navier-Stokes equations. It is shown
that there is a critical Reynolds number, which depends on the
annulus geometry and whether the endwalls are stationary or

rotating with the outer cylinder, beyond which the basic state is
unstable. The very early time evolution of the perturbations for
Reynolds numbers beyond critical show exponential growth, the
perturbation flow has a moderate azimuthal wavenumber, and is
localized in the sidewall boundary layer of the inner cylinder
if the endwalls are rotating or in the outer cylinder boundary
layer if the endwalls are stationary. The basic state is unstable
to a band of azimuthal wavenumbers, centered about the critical
wavenumber. As the perturbation grows and nonlinear effects
become important, modulations caused by the sideband modes
lead to one of the azimuthal cells growing faster than the oth-
ers, and its broad cellular structure becomes concentrated into a
pair of vortical streaks aligned with the mean flow direction in
the boundary layer either side of the mid-height of the annulus.
The streaks become elongated in the azimuthal direction, with
the local vorticity and local velocity becoming more aligned.
Vortex stretching leads to their rapid intensification, to the point
where the numerics are unable to resolve them. This develop-
ment has much in common with the shear instability of zero-
pressure gradient boundary layers, where Tollmien–Schlichting
waves first grow exponentially, become unstable to a modula-
tion, followed by a rapid transition to turbulence [5].

Governing equations and numerical technique

Consider the flow in an annulus of height H, inner radius Ri,
and outer radius Ro, completely filled with a fluid of kinematic
viscosity ν. The flow is driven by the constant rotation of the
outer cylinder at angular speed Ω and the inner cylinder is kept
stationary. We consider two cases, one where the top and bot-
tom endwalls are rotating with the outer cylinder, and the other
where the endwalls are stationary.

The annular gap, D = (Ro−Ri), is used as the length scale, and
the viscous time across the gap, D2/ν, is used for the time scale.
The flow is governed by three parameters: Reynolds number
Re = ΩRoD/ν, aspect ratio H/D, and radius ratio Ri/Ro. The
non-dimensional Navier–Stokes equations are:

(∂t +uuu ·∇)uuu =−∇p+∇
2uuu, ∇ ·uuu = 0, (1)

where p is the pressure and uuu = (u,v,w) is the velocity field
which we will represent in cylindrical coordinates (r,θ,z), with
r ∈ [ri = Ri/Ro/(1−Ri/Ro),ro = 1/(1−Ri/Ro)], θ ∈ [0,2π)
and z ∈ [−0.5H/D,0.5H/D]. The vorticity field is ∇× uuu =
(ξ,η,ζ) and the helicity is He = uuu · (∇×uuu). The boundary con-
ditions on the inner and outer cylinder are:

uuu(ri,θ,z) = (0,0,0) and uuu(ro,θ,z) = (0,Re,0), (2)

and on the endwalls, the two cases are:

stationary: uuu(r,θ,±0.5H/D) = (0,0,0), (3)
rotating: uuu(r,θ,±0.5H/D) = (0,(1−Ri/Ro)rRe,0). (4)

The Navier–Stokes equations are solved using a second-order
time-splitting method with consistent boundary conditions for
the pressure. Spatial discretization is via a Galerkin-Fourier ex-
pansion in θ and Chebyshev collocation in r and z. For the
results presented here, we have fixed H/D = 1 and Ri/Ro = 0.5
and have considered Re up to 5×105.
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Figure 1: Vortex lines, streamlines, and azimuthal vorticity of
the basic states at Re = 105 with stationary endwalls (top row)
and rotating endwalls (bottom row).

The basic states have been computed using nr = nz = 160
Chebyshev modes in the radial and axial directions. In de-
termining stability to three-dimensional perturbations, up to
nθ = 64 has been used. The stability of the basic states was
determined via time evolution; using the basic state at a given
point in parameter space, a small (of order 10−8) random per-
turbation was introduced at all (r,z) collocation points for the
azimuthal Fourier wavenumber m = 1, and this is propagated to
all azimuthal wavenumbers via the nonlinear terms. After some
time, either all perturbations decay towards machine zero, indi-
cating that the basic state at that point in parameter space is sta-
ble, or the perturbations organize themselves and have positive
exponential growth, much as in a generalized power method.
The growing perturbation does not need to nonlinearly saturate
in order to determine its growth rate, and so the method is ef-
ficient in determining the growth rate and structure of the cor-
responding eigenmode. This is aided by monitoring the modal
kinetic energies

Em = 0.5
∫ 2π

0

∫ 0.5H/D

−0.5H/D

∫ ro

ri

uuumuuu∗mrdrdzdθ, (5)

where uuum is the mth azimuthal Fourier mode of the velocity field
and uuu∗m is its complex conjugate.

Results

Figure 1 shows the vortex lines (isocontours of rv), stream-
lines, and isocontours of azimuthal vorticity η, for basic states
at Re = 105. For the stationary endwalls case, the vortex lines
all enter and leave the annulus at the small gaps in the corners
where the rotating outer sidewall and the stationary endwalls
meet. Since the vortex lines are tangential to the stationary end-
walls, there is vortex line bending producing azimuthal vortic-
ity, which in turn results in large-scale meridional circulations
that are clockwise in the bottom half and counter-clockwise in
the top half. The meridional circulations tend to further advect
the vortex lines radially inwards along the two endwalls, and the
return flow is radially outwards along the mid-height, leading to
an intense boundary layer on the outer cylinder. When the end-
walls are co-rotating with the outer cylinder, most of the vortex
lines originate at the bottom endwall and terminate at the top
endwall and the flow in the bulk away from the inner cylinder
boundary layer region is in solid-body rotation. Again, the fact
that some vortex lines need to meet at the corners leads to vor-
tex line bending that drives a meridional flow radially outward
along the endwalls and radially inward along the mid-height.
Intense boundary layers are established along the endwalls and
on the inner cylinder. Further details on the structure of the
boundary layers are available [4].
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Figure 2: Time series of Em, showing m > 1 (E0 remains of
order 1011). The initial condition consists of the basic state at
Re = 2.6×105 with rotating endwalls, to which a random per-
turbation was introduced into azimuthal Fourier mode m = 1.

Figure 2 show an example of the temporal evolution of the
modal kinetic energies following a perturbation to a basic state.
Specifically, it corresponds to taking as the initial condition the
basic state at Re= 2.6×105 with rotating endwalls, and at t = 0
random perturbations of order 10−8 are applied to the m = 1
Fourier component of the velocity. The corresponding modal
energy of the perturbation is E1 ∼ 10−16. This is a very small
perturbation; the basic state has all of its kinetic energy in the
axisymmetric component of the velocity and E0 ∼ Re2. The
nonlinear terms in the Navier–Stokes equations propagate the
small perturbations to all azimuthal wavenumbers. The initial
evolution of this nonlinear initial value problem is analogous
to performing a matrix-free generalized power method, where
the actions of the Jacobian matrices for the perturbations are
given by the time integration of the Navier–Stokes equations. If
the basic state is unstable to any non-axisymmetric mode, time
evolution organizes the flow into these modes, and if the basic
state is unstable to more than one mode, these unstable modes
initially evolve independently because nonlinear couplings be-
tween them are at levels below numerical round-off noise and
are hence negligible. The system, especially at high Re, is non-
normal and so transient growth is also possible. In the non-
linear initial value problem, both linear non-normal transients
and linearly unstable eigenmodes compete. The unstable modes
grow exponentially, quickly overtaking any algebraic transient
growth activity.

Figure 2 shows that following the initial impulse, E1 decays to
machine noise levels, but that by t ≈ 0.001, the flow has or-
ganized itself and E8 begins to grow exponentially, and very
shortly after E7 also begins to grow at a slightly slower rate. At
t ≈ 0.0015, E9 and E6 are also growing, but with much slower
rates. These discrete azimuthal wavenumbers constitute a band
of modes to which the basic state is unstable, and while their
magnitudes remain small, they are evolving independently of
one another. Their independent evolution is verified by the fact
that E1 is decaying while all four of these modes are growing.
By t ≈ 0.004, E8 ∼ 10−7 and now the m = 8 mode is large
enough that nonlinearities are no longer negligible. This is seen
in the growth of its first harmonic, E16. Also, there is now non-
linear interaction between m= 8 and m= 7 leading to growth in
E1. The nonlinear interactions between m = 8, m = 7 and m = 1
result in growths of m = 14 and m = 15 as well. Note however
that E9 and E6 are still several orders of magnitude smaller than
E8 and E7 at this time, and continue to grow independently of
everything else that is happening.

The structure of the flow perturbation consists of eight pairs of
rolls that extend from endwall to endwall within the thin in-
ner cylinder boundary layer, with little distortion in their shape
but attaining maximum strength near the mid-height. These are
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Figure 3: Time series of modal kinetic energies, E0, E1 E8 and
the harmonics E8k for k ∈ [2,8] (the other Em are not shown
for clarity of presentation), for the rotating endwalls case at
Re = 4×105. The initial condition consisted of the axisym-
metric basic state to which a small random perturbation in the
Fourier mode m = 1 was introduced at t = 0, giving an initial
E1 ∼ 10−23. Shown is the evolution of Em from t = 0.0002, just
before the first harmonic E16 begins to grow, following which
E1 begins to grow, leading to the localization of the disturbance.

analogous to Tollmien–Schlichting waves. The axial and az-
imuthal vorticity components are confined very deep inside the
boundary layer, and while they consist of eight pairs of struc-
tures of alternating sign as well, these structures are stretched
out in the azimuthal direction by the mean azimuthal velocity
in the boundary layer. The perturbation does not consist of
eight identical pairs of structures; modulations from the other
azimuthal wavenumbers that are shown in figure 2 are evident.

Evolutions of the type described above have been computed
for many Re, for both the rotating and the stationary endwalls
cases. The two endwall cases are similar in many respects. In
both cases, the sidewall boundary layer thickness is less than
5% of the annular gap, and the azimuthal wavelength is the
same for both. Note that the circumference of the outer cylinder
is twice that of the inner cylinder, and the most amplified az-
imuthal wavenumber for the stationary endwalls case is m = 16
and for the rotating endwalls case it is m = 8. In the rotating
endwalls case, the inner cylinder boundary layer has an outer
flow that is nominally solid-body rotation and the boundary (in-
ner cylinder) is stationary. For the stationary endwalls cases, the
boundary layer is on the rotating outer cylinder and the outer
flow is nominally stationary. Viewing this from a frame of ref-
erence rotating with the outer cylinder brings this case in line
with the rotating endwalls cases, except that for the boundary
layer flow on the inner cylinder, the curvature is convex and for
the boundary layer flow on the outer cylinder the curvature of
concave. However, the thinness of the boundary layers suggests
that curvature effects are negligible, and the difference in the
sign of curvature does not result in any qualitative differences
in the two flow cases.

The band of Hopf modes with azimuthal wavenumbers centered
about the critical wavenumber lead to nonlinear modulation as
the perturbations grow and nonlinear interactions. If the bifur-
cations were supercritical, then one of the perturbation modes
would saturate nonlinearly at the expense of the others and a
new stable solution with the winning m would appear (which m
wins depends on initial conditions), and this new state would be
a rotating wave since the rotational invariance of the system is
broken at the bifurcation. However, due to the subcritical nature
of the instability, the Hopf modes do not saturate nonlinearly to
a nearby state in phase space.

Figure 3 shows the time-series of some of the modal kinetic en-
ergies for the rotating endwalls case at Re = 4×105. Shown
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Figure 4: Azimuthal vorticity η at the inner cylinder for Re =
4×105 at times (a) t = 0.00090, (b) t = 0.00120, (c) t =
0.00130, and (d) t = 0.00135. The levels are η ∈ [−106,106].

are the energies in azimuthal wavenumbers m = 0,1,8 and 8k
for k ∈ [2,8] (the resolved harmonics of m = 8); the energies
of the other wavenumbers are not shown for the sake of clarity.
The time series focuses on the time when the nonlinearities are
becoming important. The initial condition was the axisymmet-
ric basic state for the same parameters, to which a small random
perturbation in m = 1 was introduced at t = 0. By t ≈ 0.00028
the first harmonic of the most dangerous Hopf mode, E16, be-
gins to grow and very shortly afterwards, E1 also begins to grow
with a marginally slower growth rate. The third harmonic, E24,
doesn’t start to grow until t ≈ 0.00065, and then the other higher
harmonics begin to grow after shorter and shorter intervals. By
t ≈ 0.0013, all azimuthal wavenumbers (including those not
harmonic with the critical m, which are not shown in the figure)
begin to grow rapidly and small scale features in the boundary
layer become important.

An illustration of the nonlinear development of the boundary
layer flow is shown in figure 4, which shows the azimuthal vor-
ticity, η, on the inner cylinder wall at various times for the rotat-
ing endwalls case at Re = 4×105. The plots are shown at r = ri
with θ ∈ [0,2π] in the horizontal direction, and z ∈ [−0.5,0.5]
in the vertical. At early times, t . 0.0009, the disturbance level
is very low (from figure 3, E8 . 3, compared to E0 ∼ 1011),
and the boundary layer flow is essentially axisymmetric. By
t = 0.00115, the azimuthal wavenumber m = 8 component of
the disturbance is large enough to have an impact on the to-
tal flow. At this stage, even though the harmonics of m = 8
have grown substantially, the impact of the disturbance on the
wall appears essentially sinusoidal. By t = 0.00120, the pe-
riodic m = 8 structures are becoming more nonlinear, and at
t = 0.00130 they are tilted with the structure near the mid-
height being swept further in the streamwise (increasing θ) di-
rection. At this time, the streamwise (azimuthal) vorticity struc-
tures are being aligned with the streamwise flow, resulting in
vortex stretching and intensification, as seen at t = 0.00135.
By this time, all the other azimuthal wavenumbers have also
grown substantially, and their nonlinear interactions have lead
to a very noticeable localization in the strength of the vortex
stretching and intensification. At this point, the flow is still very
well resolved with nr = nz = 160 and nθ = 64. However, in
a very short time later, this resolution becomes inadequate and
the simulation blows up. By taking the flow at a slightly earlier
time as an initial condition for a simulation with higher reso-
lution, the simulation can be continued a little longer in time,
but eventually it also blows up. Figure 5 is similar to figure 4,
but for a simulation with nz = 1600. Further refinements gets
the simulation a little further, but one very quickly reaches the
practical limit of trying to resolve this localized boundary layer



Figure 5: Azimuthal vorticity η at the inner cylinder for Re =
4×105 at t = 0.001367. The levels are η ∈ [−107,107].

Figure 6: Azimuthal vorticity η at the outer cylinder for Re =
4×105 at t = 10−5. The levels are η ∈ [−107,107]. The reso-
lution used is nr = 240, nz = 500, nθ = 256 and δt = 2×10−9.

instability with a global spectral method.

The development of the Tollmien–Schlichting waves on the
outer cylinder boundary layer when the endwalls are stationary
is analogous to their development on the inner cylinder bound-
ary layer for rotating endwalls. Figure 6 shows the azimuthal
vorticity on the outer cylinder wall for Re = 4×105 with sta-
tionary endwalls at a late time, just before the simulation blows
up. The localized rapid growth due to the sideband modulation
is more pronounced, and the counter rotating pairs of helical
structures above and below the mid-height are better developed.
This is in part due to the boundary layer having twice the cir-
cumference for the same azimuthal wavelength of the instabil-
ity, and is also due to the simulation having better resolution.

Figure 7 shows isosurfaces of the helicity at late times for
the two case discussed above. The helical structures are very
flat and reside inside their respective cylinder boundary layer,
whose radial thickness is only approximately 2% of the annu-
lar gap. The dark (red) isosurfaces correspond to positive He,
where the velocity vector and the vorticity vector point in the
same direction, and the light (yellow) isosurfaces correspond
to negative He, where the two vectors point in the opposite di-
rection. The large value of He indicates that the velocity and
vorticity are well aligned. The less developed structures have
negative helicity in the top half and positive helicity in the bot-
tom half of the boundary layer. These come about because they
correspond to the Tollmien–Schlichting wavelike structures be-
ing bent by the streamwise azimuthal mean flow in the bound-
ary layer about the mid-height. The wave structures at early
times correspond to azimuthally alternating positive and nega-
tive axial (spanwise) vorticity cells spanning across the entire
boundary layer from top to bottom. At later times, when they
are bent into the streamwise (azimuthal) direction near the mid-
height, the wave structures with positive axial vorticity are bent
producing negative and positive azimuthal vorticity above and
below the mid-height, and vice versa for the wave structures
with negative axial vorticity. The wave structures with positive
axial vorticity are stronger as they are reinforced by the posi-
tive axial vorticity from the mean boundary layer flow, which
in turn weakens the wave structures with negative axial vortic-
ity. Once the wavelike structures have been bent into the az-
imuthal direction, they are rapidly stretched and intensified by
the mean flow. The azimuthally-turned structures from the al-
ternating wavelike structures with positive and negative axial
vorticity also become intertwined. The helicity indicates that
the streamwise structures consist of pairs of very closely linked
counter-rotating vortices; the velocity is in the streamwise (az-
imuthal) direction, but one of the vortices is left-handed and the
other right-handed, resulting in opposite-signed helicity. This
situation rapidly leads to small-scale instability as the vortices
are intensified via stretching.

Conclusions

Taylor–Couette flow with endwalls and a stationary inner cylin-
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Figure 7: Isosurfaces of helicity at Re = 4×105 for (a) the
rotating endwalls case at t = 0.001358, with levels He =
±7×1010, and (b) the stationary endwalls case at t = 104, with
levels He =±1012.

der is subcritically unstable. The early time form of the per-
turbation modes consists of rollers of alternating sign of axial
vorticity that are aligned in the axial direction in the boundary
layer, and behave very much like Tollmien–Schlichting waves
in shear boundary layers with zero streamwise pressure gradi-
ent, where a band of waves with different wavenumbers grow
leading to modulation and secondary instability. The sidewall
boundary layer is very thin, implying that curvature effects are
not important and accounting for the shear flow nature of the
instability, initiated by vortex bending and brought to fruition
by vortex stretching.
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